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The MURI research seeks to understand the 
chemical fundamentals of DECO

Important fundamental issues
• Establish elementary kinetics of charge-transfer processes
• Establish elementary kinetics of internal reforming and partial oxidation
• Couple elementary thermal chemistry and electrochemistry
• Determine the chemical routes to deposit formation
• Bridge scales (atomic to fluid flow) to predict cell-level performance

Technical approach
• Develop and apply predictive models across length scales
• Devise and operate experiments that illuminate particular processes
• Use focused experiments to inform, guide, and validate modeling
• Use modeling to help focus and interpret experimentation

Overall objectives
• Develop and validate advanced modeling tools
• Assist the optimal design and development of fuel-cell architectures
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Concerted theory and experimentation work 
to improve understanding the fundamentals 



Seca_Asilomar_42/05.p4

DECO MURI Colorado School of Mines University of Maryland California Institute of Technology

Molecular dynamics assists understanding 
surface chemistry and transport



Seca_Asilomar_42/05.p5

DECO MURI Colorado School of Mines University of Maryland California Institute of Technology

Surface diffusivities are derived from 
molecular-dynamics simulations
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Pattern anodes are an important vehicle to 
establish the charge-transfer chemistry

Electrochemical performance
• Voltage-current characterization
• Impedance spectroscopy

Surface interrogation
• Micro-Raman spectroscopy
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Pattern anode experiments provide 
polarization and impedance data
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Deposit formation affects pattern-anode 
cell performance significantly
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UMCP’s optically accessible anode provides 
a means to interrogate surface chemistry
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Samaria-doped ceria (SDC15) is 
characterized with impedance spectroscopy
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Hydrogen electro-oxidation appears to 
occur on the ceria surface
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MD simulations reveal the role of different 
metals in catalyzing carbon growth
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Homogeneous chemistry models predict 
observed fuel conversion and deposits
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Gas-phase kinetics transforms the fuel as a 
function of composition and residence time
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Molecular-weight chemistry is a perturbation 
on heterogeneous and electrochemistry

Solve dual-channel model
• Neglect gas-phase chemistry
• Simple gas-phase chemistry
• Include heterogeneous chemistry
• Include electrochemistry

Evaluate fluxes to/from channel

Elementary gas-phase chemistry
• Modified plug flow
• Imposed wall fluxes
• Predict molecular-weight growth

Large mechanism
~ 2500 reactions 
~ 300 species

Combustion
• Soot models



Seca_Asilomar_42/05.p16

DECO MURI Colorado School of Mines University of Maryland California Institute of Technology

Cell structure and operation affect the gas-
phase molecular-weight growth
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The models incorporate elementary 
charge-transfer chemistry
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Goodwin’s pattern-anode model is the 
first of its kind
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Performance is predicted from elementary 
chemistry and thermodynamics
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What is the role of the anode structure in 
promoting reforming, shifting, and CPOX
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MEA models do a good job of representing 
measured electrochemical performance
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The Dusty-Gas model applies when the mean-
free path is comparable to the pore size
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The models accommodate elementary 
heterogeneous reforming/CPOX chemistry

Collaboration with Olaf Deutschmann, University of Karlsruhe
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The separated-anode experiment is designed 
to isolate thermal heterogeneous chemistry
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Dry reforming (CO2) is nearly as effective as 
steam reforming
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Our models incorporate coupled fluid flow, 
thermal chemistry, and electrochemistry

Approach
Reactive flow
Porous-media transport
Homogeneous chemistry
Heterogeneous chemistry
Electrochemistry

Performance
Efficiency
Utilization
Power density

Operation
Cell voltage
Flow rates
Fuel mixtures

Design
MEA architecture
Catalyst materials
Electrode microstructure
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The models predict composition along 
the channels and through the electrodes 

Anode lnlet:  66% H2, 22% CO, 12% CH4,  30 cm/s, 800˚C, 1 atm.
Cathode: Air
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Efficiency, utilization, and power density 
depend greatly on operating voltage
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Although understanding is advancing 
rapidly, much remains to be done 

Charge-transfer chemistry
• Currently in modified BV form ==>   Need elementary mechanisms
• Currently consider H2 ==>   Need general mixed potential
• Limited validation data ==>   Need validation data and theory

Reforming and CPOX chemistry
• Current models for methane   ==>   Need higher hydrocarbons 
• Current models for Ni ==>   Consider alternative catalysts
• Assume inert ceramic supports ==>  Investigate ceramic activity

Cell and electrode optimization
• Structure drives performance ==>   Functionally grade electrodes
• Alternative catalyst function ==>   Functionally grade electrodes

Coupling at the stack and system level
• Models are for single channel ==>   Extend to full cell and stack
• Couple to thermal analysis ==>   Depends on system boundaries
• Models for channels ==>   Consider tube or sheet layout 


